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1. Introduction

Various models for parameter setting have been proposed within the Principles
and Parameters (P & P) framework, among which we identify two main lines of re-
search and call them the “grammar selection approach” and the “direct parameter
setting approach”. The former, exemplified by models like the Triggering Learn-
ing Algorithm (TLA, Gibson & Wexler 1994) model and the classical Variational
Learner (VL, Yang 2002) model, views language acquisition as the selection of the
target grammar, with the correct value setting of parameters, from all possible hu-
man grammars defined by UG. In contrast, the direct parameter setting approach,
implemented in Fodor, Sakas, and colleagues’ Structural Triggering Learner (STL,
e.g., Fodor 1998, Sakas & Fodor 2012, Sakas et al. 2017), works with one single
grammar and sets the values of parameters directly in the grammar. Showing that
the two approaches complement each other, we introduce a new hybrid approach:
the “Clustering Approach”, built upon Yang’s (2002) Naive Parameter Learner
(NPL). Our goal is to demonstrate that an effective approach to modeling para-
metric variation in child language acquisition draws from three sources: language
acquisition as grammar selection, language acquisition as direct parameter setting,
and the understanding that parameters (or the pool of possible human grammars)
are hierarchically structured by parametric clusters.

This paper is organized as follows. Section 2 reviews the direct parameter
setting approach and the grammar selection approach, and makes a direct com-
parison of the two. Section 3 introduces our hybrid approach, the Clustering Ap-
proach. Section 4 presents the simulation results of the Clustering Approach in
comparison with VL and NPL. Section 5 concludes the paper.

2. Grammar selection and direct parameter setting
2.1. The grammar selection approach

The grammar selection approach was implemented in various computational
learning models, such as Gibson & Wexler’s (1994) Triggering Learning Algo-
rithm (TLA) and Yang’s (2002) general Variational Learner (VL). Due to space
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constraints, we will only review Yang’s VL here. The VL assumes a hypothesis
space which consists of all possible human grammars. The learner’s task is to navi-
gate through this hypothesis space to identify the target grammar. The navigation is
guided by the Linear Reward-Penalty Scheme (Bush & Mosteller 1951) as follows:
A grammar G; is sampled from the hypothesis space according to the probability
distribution of the hypothesis space. Given an input sentence s, if G; can analyze
s, then the probability of G; is increased, and meanwhile the probabilities of all
other possible grammars in the hypothesis space are decreased. Otherwise, if G;
cannot parse s, decrease the probability of G; and meanwhile increase the proba-
bilities of all other possible grammars in the hypothesis space. When another input
sentence is presented, a grammar that could be the same as or different from G;
is sampled to parse this new sentence. Again, the probabilities of all grammars
in the hypothesis space are updated based on whether this grammar can parse s.
This process continues until the probability of the target surpasses all competing
grammars, signaling that the learner has learned the target grammar.

VL is a highly successful model for parameter setting, and it possesses sev-
eral advantages. One is that it advances the line of research of integrating UG
and statistical learning: UG provides a hypothesis space, while statistical learning
guides the learner towards the target grammar. This learning algorithm has been
demonstrated to consistently converge, given sufficient input (Straus 2008, Sakas
et al. 2017). However, VL requires a substantial number of input sentences for
the algorithm to converge on the target grammar, particularly when the number
of parameters realistically reflects systematic cross-linguistic variations. Also, the
model must keep track of the probabilities of all possible grammars in the hypoth-
esis space and their updates. The number of competing grammars is determined
by the number of parameters. The standard assumption is that all parameters are
binary and thus each has two values. The number of possible grammar is equal to
2 raised to the power of k, where k is the number of parameters. As the number
of parameters increases, the total number of possible grammar increases exponen-
tially. This dramatic growth also makes tracking their probabilities challenging
due to constraints on memory resources.

2.2. The direct parameter setting approach

The direct parameter setting approach has been implemented in Fodor and
Sakas’s STL models (e.g., Fodor 1998, Fodor & Sakas 2004, Sakas & Fodor 2012,
Fodor 2017, Sakas et al. 2017; also see Howitt et al. 2021 for a model that incor-
porates many of STL’s features). STL characterizes parameters and their values
as UG-specified treelets, where a treelet is a sub-structure of a larger sentential
tree. It assumes a direct mapping from the knowledge of parameters to parts of
the structure in the parsing of actual input sentences. Language learners search a
pool of all possible parametric treelets determined by UG. Once a treelet is used
in online parsing, it joins the set of treelets employed for the target language, mak-



ing it accessible for subsequent parsing. Consequently, whenever a new sentence
is introduced for parsing, language learners need to search this set of treelets in
use and find treelets that offer a proper structural analysis of that sentence. How-
ever, if the search into the set of treelets in use cannot find such treelets, then the
parser must further search the pool of all possible parametric treelets to find new
suitable ones for parsing the sentence. Another important property of STL is that
the parser distinguishes between unambiguous and ambiguous triggers (cf. Roeper
& Weissenborn 1990). Only unambiguous triggers are reliable cues for a specific
parameter setting.!

The direct parameter setting approach enjoys important advantages. It signifi-
cantly reduces the size of the hypothesis space compared to the grammar selection
approach. This method no longer requires a search space encompassing all possi-
ble human grammars. Instead, the size of the hypothesis space is linearly propor-
tional to the number of parameters. In the case of STL in which each parameter has
two potential values, and each value corresponds to a specific treelet, the number
of possible treelets in the hypothesis space is 2-n, where n is equal to the number
of parameters. For instance, when 13 parameters are considered and each has 2
value options, there are 26 treelets in the parametric treelet pool to select from.

However, the direct parameter setting approach also faces some significant
challenges. First, to analyze a given input sentence, STL must search both the set
of parametric treelets currently in use and potentially the entire pool of parametric
treelets permitted by UG. Second, to determine whether a specific trigger is unam-
biguous, the parser must apply each of the treelets (including treelets in use and
all possible treelets in the pool) in the analysis of every given input sentence. This
ensures that no more than one set of treelets can successfully analyze a given sen-
tence. If otherwise more than one set of treelets are applicable, the trigger will be
instead identified as ambiguous. Furthermore, since there may be instances where
individual treelets cannot fully analyze a sentence on their own, various combi-
nations of treelets must be tried to achieve a successful analysis. Therefore, the
STL approach generally necessitates an extensive search through all parametric
treelets. It’s crucial to emphasize that such a search is seen as overly taxing for the
parser, especially during online parsing, where cognitive resources are expected to
be limited.

It is important to note that the challenges faced by the direct parameter set-
ting approach, particularly the requirement for extensive searching during online
parsing, can be addressed by the grammar selection approach. The grammar se-
lection approach avoids the extensive search challenge during online parsing noted
in the direct parameter approach because the learner selects the grammar with a
full set of parameters with their hypothetical values. Thus, any possible grammar
selected from the grammar pool can be directly used as the grammar that guides

1 Different variants of the STL models deal with ambiguous input differently. Strong STL can learn
from both unambiguous and ambiguous triggers. Weak STL implements serial parsing and it learns
only from unambiguous triggers, ignoring all ambiguous triggers.



the parser. There is no need to learn the parameter values during parsing since
all the parameter values have been presupposed or hypothesized in possible gram-
mars. In addition, the grammar selection approach does not distinguish ambiguous
triggers from unambiguous triggers and make use of both for learning. As we will
explore further, computational models based on grammar selection can effectively
set parameters without needing this differentiation, given sufficient input sentences
(Sakas et al. 2017).2

In sum, both the grammar selection and the direct parameter setting approach
face significant challenges, making neither of them an optimal solution within the
parameter setting framework. However, they seem to counterbalance each other’s
shortcomings. The issues of the grammar selection approach are resolved by the
direct parameter setting approach, and vice versa. This observation gives hope
for a more ideal model. By effectively merging these two approaches, we might
harness the strengths of both while bypassing their limitations. We will delve into
such hybrid approaches in the subsequent section.

3. The hybrid approach

As pointed out in the last section, the direct parameter-setting approach and
the grammar selection approach actually complement each other, suggesting the
potential for an integrated, hybrid approach. In this section, we will introduce a
precursor of our hybrid approach, Yang’s (2002) Naive Parameter Learner (NPL),
and our Clustering Approach.

Yang’s NPL reserves grammar sampling for parsing from grammar selection
but meanwhile adopts the update of the probabilities of parameters instead of pos-
sible grammars. Specifically, like STL, NPL sets parameters directly and individ-
ually. Each time an input sentence is encountered, a grammar comprising a list of
parameter-value pairs is sampled to parse it. This is how the NPL approach ad-
dresses the challenges associated with the grammar selection approach: it reduces
the search space and does not need to update and track the probabilities of possible
grammars but only the probabilities of individual parameters.

However, an important concern with NPL is that as the amount of the possi-
ble grammars increases, (e.g., with more than 10 independent parameters), NPL,
just like VL, also faces an extended period of exploration: identifying the target
grammar that always correctly parses the input sentences is challenging with a ran-
dom search into a vast hypothesis space. For example, the probability of finding
the right grammar out of a hypothesis space generated by 20 parameters is ﬁ
This issue is inherent to all models that assumes grammar selection for parsing
but updates all parameters in the selected grammar upon successful parsing. The
issue is not merely the amount of input sentences the model requires to converge
on the target grammar; more importantly, it implies that the learner does not set

2 However, Pearl (2011) and Nazarov et al. (2021) show that VL (and NPL) encounters difficulties
learning all stress patterns from ambiguous input given in Dresher’s (1999) corpus.



any parameters for a considerable amount of input sentences while exploring the
hypothesis space. This prolonged exploration period is a consequence of the diffi-
cult random sampling of the target grammar from the grammar pool, irrespective
of whether the learner has the competence to process language. When a non-target
grammar is selected, it may either successfully parse the given input sentence or
fail to do so. If successful, a list of parameters with incorrect values, differing
from those in the target grammar, will be rewarded. If it fails, a list of parameters
that may be part of the target grammar are penalized. The introduction of more
parameters into the target grammar will simply result in greater confusion.

Such an issue is significant as we assume in the learning model that children
are equipped with a parser capable of parsing the linguistic input, given a hypoth-
esized grammar. This predicts that even if children already have the competence
for parsing, they cannot learn parameters from the input simply because it is al-
most impossible to select the target grammar out of a big grammar pool. To com-
pound this issue, a lack of parameter setting could persist even when the learner
has successfully parsed a significant number of sentences. Such a prediction seems
counter-intuitive and empirically unsupported, as “most (but not all) parameters
are acquired fairly early” (Yang 2002: 46, also see Thornber & Ke to appear). The
Clustering Approach attempts to address this issue. It posits that only the parame-
ters used in the input sentence will be updated upon a successful parse, and only a
limited number of parameters (=1 in this paper) that function as sampling param-
eters will be penalized upon a parsing failure. In what follows, we will detail the
main mechanisms of the Clustering Approach.

First, the Clustering Approach adopts the idea that parameters are hierarchi-
cally structured (Baker 2008, Biberauer & Roberts 2015, Roberts 2019), sharing
significant properties with those models that rely on parameter learning orders.
The learning orders can be due to constraints from UG that limit access to cer-
tain types of input (Lightfoot 1989) or learning order biases, stemming from either
innate factors or input-related distributional information, such as those applied in
models for acquiring phonological parameters (Dresher 1999, Pearl 2011). In the
Clustering Approach, these parametric clusters are learned in order, specifically,
from hierarchically higher parameters to lower ones, with the hierarchy being de-
termined completely by the input. Figure 1 depicts this hierarchical organization,
representing an acquisition stage where two parameters have been set: P1 = 0 and
P2 = 1. With these two parameters set, the grammar pool has shrunk to a quar-
ter of its original size. That is, the learner at this point can disregard all possible
grammars where P1 = 1 and P2 = 0. The learner’s subsequent goal is to identify
which next parameter can serve as a clustering criterion. This decision is entirely
driven by the input: the parameter that has a probability Prob(P=0) whose abso-
lute value of Prob(P=0) - 0.5 is the highest (P3 in Figure 1) will be prioritized
and moved to the top of the list as the focus of learning. As will be detailed later,
grammar selection from the current grammar pool is guided by the probabilities of
P3=0 and P3=1. This is because grammar selection involves choosing a possible



grammar from either the cluster of grammars with P3=0 or the cluster with P3=1.
The probabilities of P3 (and other parameters detected in the input if the parsing
is successful) will then be updated in the learning process. If a specific value of
P3 consistently receives predominant and consistent support from the input, lead-
ing to a probability nearing O or 1 (or surpassing a threshold), P3 will become the
subsequent parameter serving as a criterion to divide the grammar pool into two
clusters: one with the probability set at 0, and the other at 1. The parameters that
have been set were set in the same way. If a parameter is not used in a specific
language, its probability will remain close to its initial value of 0.5, causing it to
be pushed to the bottom of the hierarchy. While these parameters are present, they
act as if they are irrelevant to the target grammar. In practice, they remain inactive,
seeming as though they are not part of the learner’s mental representation of the
target grammar, which is the desired outcome. Such parameters do not increase
the number of possible grammars for learning. In this sense, parameter setting in
the Clustering Approach is driven by the input.
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Figure 1: Grammar pool clustered by parameters that are hierarchically
ordered
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Figure 2: Parameter setting in the Clustering Approach

within the Clustering Approach. All parameters are embedded in the parser. Only
the parameters that have been utilized in successful parsing will be collected into
the set of updating parameters. We refer to the parameters that have been used
to parse a specific sentence as the parameters in use. Only the parameter with
the most extreme probability among the updating parameters will be employed for
clustering the current grammar pool and sampling a grammar from the grammar
pool to parse the input. This parameter is termed the sampling parameter. Once a
parameter reaches thresholds, it will be classified into the set parameters, and its
probability will no longer be updated. The set parameters reduce the size of the
grammar pool as the possible grammars with different values than the set values
are excluded from the future sampling process.

As a hybrid approach, the Clustering Approach incorporates many mecha-
nisms from the NPL. Figure 2 presents a flowchart illustrating the Clustering Ap-
proach. We assume a grammar pool that consists of all possible grammars deter-



mined by or derived from UG or other innate knowledge. The size of this grammar
pool corresponds to the number of all possible combinations of parameter values.
Therefore, the initial size of the grammar pool is equal to what is assumed in both
the VL and NPL models. Under the Clustering Approach, the grammar pool is hy-
pothetical, designed solely to generate a possible grammar for the parser. It serves
no other function beyond this. As such, it is “light-weighted.”

Like the NPL, the learner samples a grammar from the grammar pool and uses
that grammar to parse a given input sentence. This sampling process is guided by
the probability of the sampling parameter and the set parameters. For example,
as shown in Figure 2, if set parameters include two parameters P11=0 and P12=1,
all the possible grammars of P11=1 or P12=0 will be excluded from the grammar
pool. The updating parameters include P21, P22, and P23, with P21 having the
most extreme probability value (closest either to 0 or 1). Therefore, P21 will be
the sampling parameter at this point. The sampling parameter will be dynamically
updated after each round of update of the parameters in use. A grammar will be
sampled from the cluster of possible grammars with P21=0 and another cluster of
possible grammars with P21=1. The probability of sampling a particular cluster
is determined by the probability of P21=0 or P21=1. We also avoid tracking the
probabilities of all possible grammars. The Clustering Approach, similar to the
STL but different from NPL, tracks only the probabilities of updating parameters.

If the parser successfully constructs a syntactic tree for an input sentence by
applying the parametric treelets associated with the selected grammar, we consider
the parsing successful. In such instances, the learner identifies which parameters
and their values have been utilized. identification is feasible due to STL’s assump-
tion that the parametric values can be mapped to treelets in a structure and vice
versa.? These parameters are added to the set of updating parameters, if they are
not already included. The probabilities of the updating parameters that are used
in the parsed sentence are updated based on the Linear Reward-Penalty Scheme,
which is also implemented in NPL.

It is important to note that the Clustering Approach updates the probabili-
ties of only those parameters that are used in a parsed sentence, a key aspect of its
input-driven nature. Via this process, a series of sampling parameters will be iden-
tified based on their consistent and frequent usage in the input sentences, leading
to a learning order that is input-informed. This selective updating is a distinctive
feature of the Clustering Approach, setting it apart from NPL, which updates all
parameters in the selected grammar upon a successful parse.

If parsing fails, we assume that the parser discredits only the parameter that
is used for sampling. The intuition behind the assumption is that if a part of an
input sentence cannot be successfully parsed, then the parser should be able to
know which part of the sentence causes a problem. The parser can then guess
whether changing certain parameter values would render the sentence parsable.

3 This mapping may involve analytical ambiguity, which is outside the current scope of considera-
tion.



For example, if the sequence <object, V> cannot be parsed by a “head-initial”
parameter, then the parser should know if the parameter value were changed to
head-initial, this sequence could be parsed successfully. Under this assumption, if
the parsing failure is due to some of the current parameters in use, then the parser
should decrease these parameters’ probabilities only.

After a certain number of iterations, the probability of some specific parameter
might reach the upper threshold (e.g., 0.9), causing the parameter to be set to 1,
or it might fall under the lower threshold (e.g., 0.1), leading the parameter to be
set to 0.4 Once a parameter, P;, has its value set to either 1 or 0, it will be utilized
to cluster the grammar pool. Consequently, the grammar pool is grouped into two
clusters: one where P; is set to 1 and the other where it is set to 0. In future
grammar sampling, only the cluster that has a P; value consistent with the one set
in the learning process will be considered. This effectively reduces the size of the
grammar pool for grammar sampling by half, eliminating from consideration all
grammars with the incorrect p; value. As more parameters are set in their values,
the grammar pool quickly shrinks. The target grammar emerges if the parameters
are set according to their value in the target grammar.

4. Simulations with synthesized data

A number of simulations are conducted to explore the properties of the Clus-
tering Approach in the learning of artificial languages, in comparison to two closely
related benchmark models, namely, the VL and NPL. Recall that the primary goal
is to verify whether the Clustering Approach can address a crucial issue in VL
and NPL: namely, that with a larger number of parameters, the learner does not
begin learning the target grammar or setting its parameters until after an extended
period of exploration (even in the case where the learner has successfully parsed a
significant number of input sentences). On the contrary, what we would like to see
is that, even with a large hypothesis space, at least some parameters are learned
earlier and overall the parameters are gradually learned in sequence. For example,
the parameters that are frequently observed in the input should be learned earlier
than the parameters that occur less frequently.

We construct a few corpora of synthesized sentences as part of the input to the
model. The corpora are of m sentences, where m = cn/2, with the integers ¢ repre-
senting a constant number and #» the number of parameter. In the simulations with
12 parameters or less, we set ¢ to be 5,000. That is, 8 parameters will have cn/2 =
5000x8/2 = 20000 sentences. c is increased to 8000 for 16 and more parameters.

The sentences in the corpora are partitioned to groups with 4 + 2 + 2 + 2.+
2, if more than 4 parameters are used. This is to create sentences with a variety
of lengths. Each sentence is of the form s; = (p;);er,, Where p; € {0, 1} is the
value of the parameter j and I; c {1,...,n} is the set of all the parameters in

4 The threshold can be adjusted to gauge the probability of setting the parameter to an incorrect
value.



the sentence s;. We construct eight artificial corpora of sentences which includes
2,4, 8,12, 16, 20, 24, and 28 parameters. The distribution of the parameters in
sentences approximates a Zipf distribution (Zipf 1949), with some parameters oc-
curring more frequently than others. The length of a sentence is defined by the
number of parameters it consists. The sentences are created by randomly combin-
ing the parameters in the range of parameters.>

Figure 3 contrasts the Clustering Approach (represented by the solid line) with
the VL model (dashed line) and the NPL model (dash-dotted line). The latter two
act as benchmarks in the computational simulations. Figure 3 results from 400 iter-
ations, with a learning rate set to 0.05 for all three approaches. The target grammar
probability results are averages over the results obtained from all iterations. We set
the high-bound and low-bound threshold to 0.9 and 0.1. For the Clustering Ap-
proach, this implies that if a parameter with a certain value has a probability higher
than 0.9 or lower than 0.1, it is considered settled, and it will be used to cluster the
grammar pool. Consequently, only the cluster that has the parameter value set ac-
cordingly will be used for grammar sampling for future parsing of the input. This
reduces the size of the grammar pool by half, and thus increases the chance of
identifying the target grammar from the grammar pool in the future.

These results suggest that the Clustering Approach method is indeed distinc-
tive in terms of its beginning to learn from the input early and steadily converges
to the target grammar. In addition, the number of input sentences the model re-
quires for convergence does not increase too much with the increase in parameter
number. The Clustering Approach can learn the parameters with significant fewer
input sentences, especially when the parameter number is increased, for example,
to 12 and more. This is due to a crucial property of the Clustering Approach: it
learns the parameters that are used in the input and the parameters are learned in
an order informed by the input.

By contrast, although the VL and NPL learners perform as well as the Cluster-
ing Approach when the parameter number equals 2 and 4, the number of sentences
the learners require for them to even begin learning the target grammar increases
exponentially as the number of parameters increases. Imagine that when the pa-
rameter number is increased to 40 (see, for example, Longobardi 2018), VL will
require too many input sentences for the algorithm to actually start setting param-
eters. NPL will face a similar challenge. This is because when the parsing of
an input sentence is successful with a selected grammar, the algorithm rewards
all parameters in that grammar, including those not used in the input. This ulti-
mately adds noise to the probabilities of the parameters and thus hinders learning.
Again, the primary challenge for VL and NPL is not necessarily the quantity of sen-
tences required to successfully learn the target grammar. By contrast, an important
challenge for VL lies in the vast hypothesis space; with many possible grammars,
learners may struggle to identify the target grammar. In addition, updates to the

5 See the shared scripts for detailed specifications of the corpora: https://osf.io/qwef3/
?view_only=461e1d47c7ca4980alal3fc3460b6£20c.
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parameters are not accurately targeted at those that require updating; instead, the
algorithm updates all parameters indiscriminately. This approach can lead to pro-
longed exploration periods during which parameters remain essentially unchanged,
even though the learner has successfully processed a considerable number of input
sentences. Note that the current simulations have simplified the learning process
as the input corpora do not include noises and ambiguous sentences. This is re-
flected in the short actual learning periods, evident after the probability of the target
grammar begins to increase. Such observation further highlights the significance
of the problematic “flat” learning period. For example, VL does not learn the tar-
get grammar at all from input derived from a corpus generated by 12 parameters,
whereas NPL stops setting any additional parameters of the target grammar after
learning most of the parameters (between 8-10) under the 12 parameter condition.
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Figure 3: Comparing the Clustering Approach and Yang’s (2002) VL and
NPL modeled on synthesized data with 2, 4, 8, and 12 parameters.

To compare further the performance of the Clustering Approach and the NPL
at a synthesized language with more parameters, we simulated their learning of
languages with 16, 20, 24, and 28 parameters. Figure 4 is based on the same
setting as the previous simulations. The results confirm that a hypothesis space
generated by 16 to 28 parameters is challenging for the NPL model, but much less
so for the Clustering Approach.

Another important aspect of the Clustering Approach is its emergent prop-
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Figure 4: Comparing the Clustering Approach and Yang’s (2002) NPL
modeled on synthesized data with 16, 20, 24, and 28 parameters.

erty. This is related to a potential concern that for some parameters, their triggers
might be so rare in the input that they might never reach either the upper or lower
thresholds. The Clustering Approach allows parameters that are most frequent
and consistent in the input to be set first, and the parameters which rarely occur or
associate with significant variation will be set later. This is confirmed in empir-
ical studies (cf. Legate & Yang 2007). Could some of the parameters which are
extremely rare in the input be left unset in the end? The model’s answer is yes.
This suggests that children are uncertain about some parameters even though they
have learned many other parameters. This predicts that in experimental studies, we
should be able to observe some uncertainty with regard to those parameters (see
e.g., Ke & Gao 2020). Which parameters are they? One of the central goals of
our ongoing project is to identify the learning trajectories of different parameters,
which has the potential to further test the empirical predictions of the Clustering
Approach in experimental studies.

Finally, while the Clustering Approach consistently outperformed the NPL
model in our simulations, it may not always successfully learn the target grammar
under the following circumstances: (i) some parameters are too infrequent (e.g.,
0.010 to 0.015 of the input) when the parameter number is increased to 20 and
more; (ii) the corpus includes a fair amount of long sentences that consist of more
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than 20 parameters; (iii) the number of parameters is increased but the number of
input sentences stays the same. Since these restrictions are reasonable constraints
for a computational model of language acquisition, they do not raise immediate
concerns but warrant further research.

5. Conclusions

In this paper, we have briefly reviewed some representative approaches to pa-
rameter setting for child language acquisition and made a contrast between the
grammar selection approach and the direct parameter setting approach. A signifi-
cant merit of the direct parameter setting approach is that it does not assume a vast
hypothesis space. Instead, it tracks a single grammar, comprising a set of param-
eters that are set directly based on relevant structural information extracted from
the primary linguistic data. Yet, its primary drawback is the necessity for identify
relevant parametric treelets as well as ambiguous and unambiguous triggers during
online parsing, presupposing an exhaustive search during online parsing.

By contrast, the grammar selection approach assumes the learner searches
through a hypothesis space of possible grammars to identify the target grammar
based on the learner’s analysis of input sentences. Since the grammar selection
approach assumes that the parser adopts the grammar that is sampled from the hy-
pothesis space and applies it in the analysis of input sentences, it no longer needs
to initiate immense searches to find appropriate parameters/parametric treelets for
the analysis of the given input sentences. However, the grammar selection ap-
proach requires a significant number of input sentences to successfully navigate a
vast hypothesis space. Interestingly, it is observed that the direct parameter setting
approach addresses these issues directly: navigating through all possible human
grammars becomes unnecessary when parameters are set directly.

A significant observation of this paper is that these approaches seem to com-
plement each other in their major aspects. Consequently, we propose a hybrid
method, the Clustering Approach, that integrates the grammar selection and direct
parameter setting approaches, following the NPL model. The Clustering Approach
envisions a pool of possible grammars without necessitating the tracking and eval-
uation of each; on the other hand, its algorithm sets parameter probabilities directly
and individually, eliminating the need for extensive online searches, thanks to the
grammar sampling from the pool during parsing. The Clustering Approach allows
some parameters that are frequently and consistently observed in the input be set
first and thus serve as clustering criteria. This dynamic nature of the Clustering
Approach distinguishes itself from the NPL model. Based on the simulation results
for the Clustering Approach and NPL, we contend that the NPL instead predicts
the learner would gain minimal knowledge about the target grammar during the
initial phase of exploration unless the target grammar is accidentally identified.
Hence, the Clustering Approach offers a more realistic, input-driven model for
the learning of parametric variation, paving the way for modeling child language
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acquisition with real linguistic data.
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