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Introduction

Fill the blank with the prepositions: in/for:

(1) She ate the cookie ___ ten minutes.
She cleaned the room ___ ten minutes.

She carried the box ___ ten minutes.

& n T o

She opened the door ___ a second.
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Introduction

These examples show four different types of verbs, each describing a different kind of event.
Some verbs naturally point to an endpoint (something is finished), while others describe
ongoing activities with no built-in finish.

(2) a. She ate the cookie in ten minutes.
She ate cookies for ten minutes.
b. She cleaned the room in/for ten minutes.

c. She carried the box for ten minutes.
She carried the box to the table in ten minutes.

d. She opened the door in a second.
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Introduction

Prior language acquisition literature shows that children by age 4 already distinguish those
verb types in comprehension tasks (though not without debate) (Ogiela, 2007; Xu and
Schmitt, prep; Martin et al., 2020).

Question: What in the input makes this learning possible?
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From Children to Models

Computational models trained on child corpora serve as:

@ Probes of the information available in the input, and

@ Tools for testing what can be learned from that input,

not as models of children’s cognitive mechanisms.
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Research Questions

Does the child input contain enough distributional information for the model to
recover the four classes of verbs that children eventually master?

@ Recoverability: Can models recover the verb classes from naturalistic adult-to-child
speech?

@ Cues: Which cues matter most: specific hand-annotated linguistic features or
distributional embeddings?

@ Robustness: Do these results hold across different model architectures (linear vs.

non-linear)?
@ Acquisition: What do these learnability patterns reveal about the cues children may rely
on?
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We analyzed the Brown corpus from CHILDES (MacWhinney, 2000), a publicly available
repository of child language transcripts widely used in language acquisition research.

The Brown corpus contains naturalistic data from three children aged 1;6-5;1
(years;months). We focused on the adult-to-child utterances (about 70,000 utterances), from
which we extracted verbs with at least 30 attestations across four categories:

eat-type: build, draw, drink, eat, write
clean-type: clean, dry, wash

open-type: open, close, break, cut, catch

carry-type: pull, ride, drive, roll, carry, wipe

Ungrammatical, idiomatic, and ambiguous uses were excluded. The final dataset contains
3,196 adult-to-child utterances.
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Feature Annotation

Each utterance was manually coded for both syntactic and semantic features:

@ Syntactic features

Presence of a direct object

Presence of a determiner with the direct object (if there is one)
Presence of a verb particle

Presence of a prepositional phrase

Presence of in- duration adverbial

Presence of for- duration adverbial

Presence progressive verb marking

Presence of past/perfective verb marking

@ Semantic features

o Presence of an overt theme

o Whether the theme (if there is one) encodes a fixed quantity

o Whether prepositional phrases (if there is one) encode source, goal, path, location, tool, or
purpose
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Model Design: Features

@ Linguistic features: Include 14 manually annotated syntactic and semantic features for
each verb token.

@ Embedding features only: 768-dimensional DistilBERT (Sanh et al., 2019) token
embeddings for the masked target lemma, learned during training, representing
distributional co-occurrence patterns without explicit structural encoding.

© Combined features: Integrates linguistic and embedding features.
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Model Design: Classifiers

© Support vector classifier (SVM model)
e scikit-learn's SVC model
o RBF kernel with scaled v
e Can handle low- and high-dimensional feature vectors — should perform well on linguistic
features as well as embeddings

@ Multilayer perceptron classifier (FFNN model)
e scikit-learn's MLPClassifier model
Five hidden layers of sizes 128, 128, 64, 32, and 16
L-BFGS solver (good for small datasets)
L2 regularization term o = 0.0001
Maximum of 200 iterations
Can handle the integration of multiple feature types and non-linear patterns

Models were run with 5-fold cross-validation on both multi-class classification and one-vs-rest
(OVR) classification.
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Results: Overall summaries

‘ Multi-Class ‘ OVR
Model Features ‘ Prec. Recall F1 ‘ Prec. Recall F1

FFNN  Linguistic | 0.2298 0.2384 0.2280 | 0.2265 0.2366 0.2256
SVM Linguistic | 0.2279  0.2387 0.2266 | 0.2441 0.2450 0.2398
FFNN Embedding | 0.3461 0.3459 0.3459 | 0.3560 0.3559 0.3559
SVM  Embedding | 0.3480 0.2893 0.2872 | 0.3578 0.3054 0.3091
FFNN  Combined | 0.3287 0.3329 0.3303 | 0.3503 0.3523 0.3512
SVM Combined | 0.3524 0.2892 0.2873 | 0.3572 0.3050 0.3092

Table: Masked classification performance on different feature combinations (support = 3011)
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Results: F1 scores per-label

Model Features carry open clean eat
Support 479 779 148 1605
FFNN Linguistic ~ 0.0886 0.2187 0.0000 0.5952
SVM Linguistic ~ 0.0669 0.2755 0.0350 0.5816

FFNN Embedding 0.1491 0.3430 0.2416 0.6901
SVM Embedding 0.0892 0.3055 0.1505 0.6912
FFNN Combined 0.1645 0.3378 0.2361 0.6665
SVM Combined 0.0846 0.3026 0.1596 0.6901

Table: F1 scores for masked token one-vs-rest classification per label (multi-class results were very
similar but generally slightly worse)
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Results: Crucial cues for eat-type verbs

Which features drive success on eat-type verbs?
@ has_DO: whether the verb appears with an overt direct object (i.e. “eat the cookies”)
@ DO_det: when an object appears, whether it bears a determiner (i.e. “eat the cookies”)

We ran an additional OVR analysis using only these two features:

Model carry open clean eat
Support 479 779 148 1605

FFNN 0.0000 0.0000 0.0000 0.6616
SVM 0.0000 0.0000 0.0350 0.6954

Table: F1 scores for masked token one-vs-rest classification per label using only two features

Both models still classify eat-type verbs with high reliability.
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e Linear (SVM) and non-linear (FFNN) models perform comparably well — pattern is likely
inherent to data, not model

@ Embeddings boost overall accuracy but don't improve aspectual discrimination

@ Combined features perform about the same as embedding-only features
@ eat-type have by far the best performance, but are also the most represented in the
training data

© Option 1: Adult-to-child utterances doe not contain enough statistical cues to learn
aspectual classes other than eat-type

@ Option 2: The data has too few examples of the other verb types for the models to learn
these classes

@ Although the distributional cues for eat-type verbs are strong, it does not follow that
children track them.
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Questions?
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